top of page
Publications
‡ denotes equal contributions
* denotes corresponding author

UBC Affiliation:

Characterizing Catalyst Function and Transformations in the Plasma Reduction of CO₂ on Atomic Layer Deposition-Synthesized Catalysts

Conlin, S.K.; Mehrabi, H.; Parette, D.N.; 
Nichols, E.M.; Coridan, R.H.*

RSC Applied Interfaces, 2024, Advance Article.

DOI: 10.1039/D3LF00271C

ALDPlasmaTOC.jpg

Molecularly Defined Electrodes Host a Concert of Protons and Electrons

Xie. S.L.; Nichols, E.M.*

News & Views, Nature Chemistry, 2024.

DOI: 10.1038/s41557-024-01471-7

InterfacialPCET.JPG

Porphyrin Aggregation under Homogeneous Conditions Inhibits Electrocatalysis: A Case Study on CO₂ Reduction

Branch, K.L.; Johnson, E.; Nichols, E.M.*

Submitted2024.

Preprint available on ChemRxiv.

SolutionAggregation.png

35+1 challenges in materials science being tackled by PIs under 35(ish) in 2023

Allen, M.; Bediako, K.; Bowman, W.J.; Calabrese, M.; Caretta, L.; Cersonsky, R.K.; Chen, W.; Correa, S.; Davidson, R.; Dresselhaus-Marais, L.; Eisler, C.N.; Furst, A.; Ge, T.; Hook, A.; Hsu, Y-T.; Jia, C.; Lu, J.; Lunghi, A.; Messina, M.S.; Moreno-Hernandez, I.A.; Nichols, E.M.; Rao, R.; Seifrid, M.; Shulenberger, K.E.; Simonov, A.N.; Su, X.; Swearer, D.F.; Tang, E.; Taylor, M.K.; Tran, H.; Trindade, G.F.; Truby, R.; Utzat, H.; Yang, Y.; Yee, D.W.; Zhao, S.; Cranford, S.*

Matter2023, 6, 2480-2487

Linear Free Energy Relationships and Transition State Analysis of CO   Reduction Catalysts Bearing Second Coordination Spheres with Tunable Acidity

Teindl, K.; Patrick, B.O.; Nichols, E.M.*

J. Am. Chem. Soc.2023, 145, 31, 17176-17186

2

images_large_ja3c03919_0011_edited.jpg

Electrochemistry Cracks the P–O Bond: Sustainable Reduction of Phosphates to Phosphorus

Nichols, E.M.*

ACS Cent. Sci.2023, 9, 343-345

images_large_oc3c00056_0002.jpeg

Templating Bicarbonate in the Second Coordination Sphere Enhances Electrochemical CO   Reduction Catalyzed by Iron Porphyrins

Derrick, J.S.; Loipersberger, M.; Nistanaki, S.K.; Rothweiler, A.V.; Head-Gordon, M.; Nichols, E.M.*; Chang, C.J.*

2

J. Am. Chem. Soc2022, 144, 26, 11656-11663

TOC.tif

Electrolyte Cation Effects on Interfacial Acidity and Electric Fields

Delley, M.F.*; Nichols, E.M.; Mayer, J.M.

J. Phys. Chem. C.2022, 126, 19, 8477-8488

JPCC_cations.tif

Free Energies of Proton-Coupled Electron Transfer Reagents and Their Applications

Agarwal, R.G.*; Coste, S.C.; Groff, B.D.; Heuer, A.M.; Noh, H.; Parada, G.A.; Wise, C.F.; Nichols, E.M.; Warren, J.J.; Mayer, J.M.*

Chem. Rev.2022, 122, 1, 1-49

ChemRev_PCETFreeEnergies.tif

Interfacial Acid–Base Equilibria and Electric Fields Concurrently Probed by In Situ Surface-Enhanced Infrared Spectroscopy

Delley, M.F.*; Nichols, E.M.*; Mayer, J.M.*

J. Am. Chem. Soc.2021, 143, 28, 10778-10792

Highlighted by E.J. Piechota in Nature Chemistry

images_large_ja1c05419_0015.tiff

Prior to UBC:

Hybrid Catalysts for Artificial Photosynthesis: Merging Approaches from Molecular, Materials, and Biological Catalysis

Smith, P.T.; Nichols, E.M.; Cao, Z.*; Chang, C.J.*

Acc. Chem. Res.2020, 53, 3, 575-587

AccChemRes_2020.tif

Urea-Based Multipoint Hydrogen-Bond Donor Additive Promotes Electrochemical CO   Reduction Catalyzed by Nickel Cyclam

2

Nichols, E.M.; Chang, C.J.*

Organomet.2019, 38, 6, 1213-1218

images_large_om-2018-00308c_0007.tiff

Iron Porphyrins Embedded into a Supramolecular Porous Organic Cage for Electrochemical CO   Reduction in Water

2

Smith, P.T.; Benke, B.P.; Cao, Z.; Kim, Y.; 
Nichols, E.M.; Kim, K.*; Chang, C.J.*

Angew. Chem. Int. Ed.2018, 57, 31, 9684-9688

anie201803873-toc-0001-m.tiff

Chelating N-Heterocyclic Carbene Ligands Enable Tuning of Electrocatalytic CO 
Reduction to Formate and Carbon Monoxide: Surface Organometallic Chemistry

Cao, Z.; Derrick, J.S.; Xu, J.; Gao, R.; Gong, M.; Nichols, E.M.; Smith, P.T.; Liu, X.; Wen, X.*; Copéret, C.; Chang, C.J.*

Angew. Chem. Int. Ed.2018, 57, 18, 4981-4985

2

anie201800367-toc-0001-m.tiff

Positional Effects of Second-Sphere Amide Pendants on Electrochemical CO 
Reduction Catalyzed by Iron Porphyrins

Nichols, E.M.‡; Derrick, J.S.‡; Nistanaki, S.K.; Smith, P.T.; Chang, C.J.*

Chem. Sci.2018, 9, 2952-2960

Included in themed collection:
"Most Popular 2018-2019 Catalysis Articles"

2

ChemSci2018.tif

Reticular Electronic Tuning of Porphyrin Active Sites in Covalent Organic Frameworks for Electrocatalytic Carbon Dioxide Reduction

Diercks, C.S.; Lin, S.; Kornienko, N.; Kapustin, E.A.; Nichols, E.M.; Zhu, C.; Zhao, Y.; Chang, C.J.*; Yaghi, O.M.*

J. Am. Chem. Soc.2018, 140, 3, 1116-1122

AccessiblePore.jpg

Supramolecular Porphyrin Cages Assembled at Molecular–Materials Interfaces for Electrocatalytic CO Reduction

Gong, M.; Cao, Z.; Liu, W.; Nichols, E.M.; Smith, P.T.; Derrick, J.S.; Liu, Y-S.; Liu, J.; Wen, X.; Chang, C.J.*

ACS Cent. Sci.2017, 3, 9, 1032-1040

images_large_oc-2017-003165_0008.tif

A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction

Cao, Z.; Kim, D.; Hong, D.; Yu, Y.; Xu, J.; Lin, S.; Wen, X.; Nichols, E.M.; Jeong, K.; Reimer, J.A.; Yang, P.; Chang, C.J.*

J. Am. Chem. Soc.2016, 138, 26, 8120-8125

images_large_ja-2016-02878u_0007.jpeg

Supramolecular Ga L       Cage Photosensitizes 1,3-Rearrangement of Encapsulated Guest via Photoinduced Electron Transfer

12–

4

6

Dalton, D.M.; Ellis, S.R.; Nichols, E.M.; Mathies, R.A.; Toste, F.D.*; Bergman, R.G.*; Raymond, K.N.*

J. Am. Chem. Soc.2015, 137, 32, 10128-10131

images_large_ja-2015-06317f_0007.jpeg

Hybrid Bioinorganic Approach to Solar-to-Chemical Conversion

Nichols, E.M.; Gallagher, J.J.; Liu, C.; Su, Y.; Resasco, J.; Yu, Y.; Sun, S.; Yang, P.*; Chang, M.C.Y.*; Chang, C.J.*

Proc. Nat. Acad. Sci.2015, 112, 37, 11461-11466

pnas.1508075112fig01.jpeg

Covalent Organic Frameworks Comprising Cobalt Porphyrins for Catalytic CO   
Reduction in Water

Lin, S.; Diercks, C.S.; Zhang, Y-B.; Kornienko, N.; Nichols, E.M.; Zhao, Y.; Paris, A.R.; Kim, D.; Yang, P.*; Yaghi, O.M.*; Chang, C.J.*

Science2015, 349, 6253, 1208-1213

2

Science_COF.tif

Bioinspired Design of Redox-Active Ligands for Multielectron Catalysis: Effects of Positioning Pyrazine Reservoirs on Cobalt for Electro- and Photocatalytic Generation of Hydrogen from Water

Jurss, J.W.; Khnayzer, R.S.; Panetier, J.A.; El Roz, K.A.; Nichols, E.M.; Head-Gordon, M.*; Long, J.R.*; Castellano, F.N.*; Chang, C.J.*

Chem. Sci.2015, 6, 4954-4972

ChemSci2015.tif

Nanowire–Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemicals

Liu, C.; Gallagher, J.J.; Sakimoto, K.K.; Nichols, E.M.; Chang, C.J.*; Chang, M.C.Y.*; Yang, P.*

Nano Lett.2015, 15, 5, 3634-3639

images_large_nl-2015-01254c_0003.tif

Bright, Emission Tunable Fluorescent Dyes Based on Imidazole and π-Expanded Imidazole

Skonieczny, K.; Ciuciu, A.I.; Nichols, E.M.; Hugues, V.; Blanchard-Desce, M.*; Flamigni, L.*; Gryko, D.T.*

J. Mater. Chem.2012, 22, 20649-20664

JMaterChem.tif
bottom of page